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Some recent papers were concerned with applicability of the Bayesian �statistical� approach to reconstruc-
tion of dynamic systems �DS� from experimental data. A significant merit of the approach is its universality.
But, being correct in terms of meeting conditions of the underlying theorem, the Bayesian approach to recon-
struction of DS is hard to realize in the most interesting case of noisy chaotic time series �TS�. In this work we
consider a modification of the Bayesian approach that can be used for reconstruction of DS from noisy TS. We
demonstrate efficiency of the modified approach for solution of two types of problems: �1� finding values of
parameters of a known DS by noisy TS; �2� classification of modes of behavior of such a DS by short TS with
pronounced noise.
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I. STATISTICAL APPROACH TO RECONSTRUCTION OF
DYNAMIC SYSTEMS

Reconstruction of DS from TS generated by this system is
usually understood as seeking its evolution operator. When a
DS is known, it is necessary to find values of parameters that
determined evolution of the system during TS generation.
Such a formulation of the problem arises, for instance, when
chaotic regimes of DS behavior are used for solution of the
problem of coded transmission of information �see, e.g., Ref.
�1��. In situations typical for most natural systems
�atmospheric-oceanic, tectonic, biological�, the DS that gen-
erated the observed TS is unknown. In this case, reconstruc-
tion of DS means construction on the basis of the informa-
tion contained in the TS of a parametrized model of unknown
evolution operator. Apparently, such a model cannot be ideal
as, generally, there does not exist such a set of parameter
values for any class of models that would make the model
absolutely adequate to the modeled DS. Inevitable discrep-
ancy between them is called “defect of the model.” In this
sense, the two above formulations of the problem of DS
retrieval are sometimes classified as the “perfect model class
scenario” and the “imperfect model class scenario” �2�.

Assume that we have at our disposal the vector TS x,
which is formed by M observed quantities x= �x�m��m=1

M and
connected with DS state u= �u�k��k=1

d via an observer h, x
=h�u�. Here d is DS dimensionality, d�M �1. Under the
perfect model class scenario d value is naturally known to us.
When DS is unknown this quantity may be estimated by
minimal embedding dimension of the attractor responsible
for its observed evolution. Methods of obtaining this infor-
mation and quite substantial restrictions were discussed by
numerous authors and summarized in different review papers
and books �see, e.g., Refs. �3,4��. In this work we restrict our
consideration to the first situation. The second situation �the
“imperfect model class scenario”� will be considered else-
where.

In what will follow we will use the following formulation
of the Bayes theorem �5�. Suppose that the system under
experiment possesses a set of properties �parameters� � that
cannot be measured directly and let values of x be recorded
in experiment. Then, posterior conditional probability den-
sity of unobservable parameters �frequently referred to as
likelihood� p�� �x� is proportional to the product of their
prior probability density p��� and prior conditional prob-
ability density of the obtained experimental results, p�x ���:

p���x� = C � p��� � p�x��� . �1�

It will be clear from what will follow that conditional prob-
ability density p�x ��� depends wholly on the way TS be-
comes noisy and on probability densities of all noises present
in the TS. Factor p��� takes into account a priori informa-
tion about the system. If such information is not available,
probability density p��� must be chosen to be constant, with
the width allowing for all possible values of parameters �.
Constant C in �1� is determined by the normalization condi-
tion: C= ��p���p�x ���d��−1.

The presence in experimental data of noise component �6�
justifies application of the probability Bayesian approach to
construction of models of dynamic systems. Consider as an
example a DS with discrete time and assume for definiteness
that measurement error �“noise”� � is additive:

�t = xt − h�ut�, ut+1 = f�ut,�� . �2�

Here, the subscript numbers discrete time counts, vector ut

= �ut
�k��k=1

d specifies now “true” �latent� state of the DS at the
time instant t �t=0, . . . ,T−1� in d-dimensional phase space
�embedding space�, the discrete time map f�ut ,�� describes
evolution operator of the DS, and �= ��m�m=1

M is the vector of
parameters.

As “true” states of the DS are unknown, the probability
densities entering �1� depend not only on parameters �, but
also on latent variables u= �ut�t=0

T−1 : p�� �x�Þ p�u ,� �x� ;
p���Þ p�u ,�� , p�x ���Þ p�x �u ,��, with prior conditional
probability density p�x �u ,�� determined wholly by the
properties of random quantities �. If they are mutually inde-
pendent and their probability densities are described by the
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same function w�, then an expression for p�x �u ,�� has the
following form:

p�x�u,�� = 	
t=0

T−1

w��xt − h�f t�u0,���� . �3�

Here, u0 is the value of latent variable at the initial moment
of time, f t�·� is t-multiple �successively reiterated t times�
discrete time map, and f0�u0 ,��ªu0. Note that u0 is the
only latent variable when TS is generated by DS and the
noise is observational.

The relations �1� and �3� solve �in probabilistic formula-
tion� the problem of seeking values of DS parameters under
which the TS was generated in the experiment. Besides, they
allow noise filtering, i.e., finding the most probable noise-
free values of the measured dynamic variable.

Unfortunately, application of the Bayesian approach to
DS reconstruction from noisy experimental data faces, as
was discussed in Refs. �2,5�, fundamental difficulties. An
increase in the length of the TS that is desirable for reducing
effective level of measurement noise makes the use of
p�u ,� �x� impracticable for calculation of needed probability
characteristics. Note that even the fastest numerical algo-
rithms based on the Markov Chain Monte Carlo method �7�
require great computer power even for simple, low-
dimensional DSs. It is obvious that expression �3� for the
chaotic TS at sufficiently large T will be too complicated for
both using the Monte Carlo method and finding the most
probable values of parameters and initial conditions. This is
attributed to the fact that, because of the fractal nature of the
strange attractor, an increase in T leads to extremely compli-
cated shape of the regions of values of the initial conditions
and of model parameters that ensure existence of the model
phase trajectory in the noise-specified neighborhood of the
trajectory reconstructed by the initial noisy TS. Accordingly,
the likelihood �3� as a function of its arguments takes on a
multimodal �“jagged”� form.

Inapplicability of the “classical” Bayesian approach to DS
reconstruction from chaotic TS explicated above was dem-
onstrated in Ref. �2� on an example of a logistic map, the
evolution operator of which is a first-order discrete time map
un+1=1−aun

2. The system may demonstrate both, regular �pe-
riodic� and chaotic behavior, depending on the value of the
only parameter a. The transition to dynamical chaos at vary-
ing a occurs through a cascade of period doublings. Recon-
struction of the value of parameter a from chaotic TS with
additive measurement noise �,

xn = un + �n,

un = 1 − aun−1
2 �4�

was considered in Ref. �2�. It was assumed that the noise is
�-correlated and has Gaussian distribution with known stan-
dard deviation ��:

w���� � exp
− �
i

�i
2� 2��

2 .

It was shown that, in the classical Bayesian formulation of
the problem �3�, the characteristic scale of irregularity of

conditional probability density p�u0 ,a �x� along the latent
variable u0 becomes less than computer accurate even at
moderate noise ��=0.1 �17� and fairly short TS �T=70�. For
finding a correct value of parameter, the root-mean-square
scatter �u0

characterizing the width of prior distribution
p�u0 ,a� must be �u0

�10−17. In other words, the classical
Bayesian approach demands unattainably exact information
about the initial state of DS.

Meyer and Christensen �8� proposed to modify the classi-
cal Bayesian formulation so as to overcome the above prob-
lem �i.e., incompatibility of the statistical approach with dy-
namical nature of the studied system�. Meyer and
Christensen criticized the work by McSharry and Smith �9�,
in which the choice of the cost function was not justified, and
proposed to assume within the framework of the Bayesian
approach that small dynamic noise is present in the system.
Then the second equation of system �2� takes on the form
ut+1= f�ut ,��+�t, where �t is a Gaussian random quantity.
Formally, as was noted in Ref. �2�, such a formulation is
incorrect: system �2� that is known to be dynamic is replaced
by a stochastic system. However, such an assumption is quite
correct in terms of the Bayesian approach and just means
weakened a priori requirements to the model: deterministic
relationship �2� of latent variables is replaced a priori by a
“less strict,” probabilistic relationship. In the work �8� it was
demonstrated that the resulting probability density �that now
includes, besides u0, other latent variables of the system�
allows statistical analysis of posterior distribution, for ex-
ample, by the MCMC method using noninformative prior
distribution for nonobservables.

The modification of the Bayesian approach proposed in
this paper has a different underlying idea that is, in a certain
sense, opposite to that in Ref. �8�. We suggest using as com-
pletely as possible a priori information about dynamic origin
of the system. In Sec. III it will be shown that such a modi-
fication enables one to construct posterior distribution much
more informative than that proposed in Ref. �8�.

In Sec. II we elucidate the idea of the modification and
present an expression for a modified posterior probability
density p�u ,� �x�. Further, for comparison with the results
obtained by Meyer and Christensen, the modified approach is
used for seeking values of the parameters of a known DS by
the noisy TS generated by this system. Application of the
modified approach for classification of DS types of behavior
by very short and noisy TS is described in Sec. IV. In the
Conclusion, we summarize the considered issues and discuss
problems that must be solved for effective application of the
Bayesian approach in more complicated situations, in par-
ticular, for making prognosis of qualitative behavior of un-
known DSs from noisy chaotic TS.

II. MODIFICATION OF THE BAYESIAN APPROACH:
PIECEWISE-DYNAMIC RECONSTRUCTION

We propose a modification of the Bayesian approach that
is based on a priori ideas about the properties of chaotic
processes generated by dynamic systems. Suppose that the
reconstructed system is known a priori to be dynamic, i.e.,
its latent states ut at different moments of time are related by
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a certain evolution operator dependent on a set of parameters
� :ut+1= f�ut ,��. The joint probability density of u and �,
describing this relationship has the form

p�u,�� � 	
j=1

T−1

�„u j − f�u j−1,��… , �5�

where ��·� is the delta function. If the dynamic system that
generated the TS functions in the chaotic mode, then the
information coupling between the TS counts is known to
decrease with increasing time interval between the counts. In
other words, the system starts to “forget” its initial state with
time. Hence, assuming the states of the system separated by
large time intervals to be independent we can regard the
latent variables to be coupled only at finite time periods �seg-
ments� of length w. In this case, the function �5� is factorized
as follows:

p�u,�� � 	
k=0

Q

	
j=1

w

�„uk�w+1�+j − f�uk�w+1�+j−1,��… ,

where Q= T	 �w+1� −1. Further, the Bayes theorem gives pos-
terior joint conditional probability density for u and
� : p�u ,� �x�� p�x �u ,��p�u ,��, where p�x �u ,�� is found
from the distribution of measured noise w���� known a pri-
ori. In accordance with �2�,

p�x�u,�� = p�x�u� = 	
l=0

T−1

w��xl − h�ul�� .

Finally, the obtained posterior probability density

p�u,��x� � 	
l=0

T−1

w��xl − h�ul��

�	
k=0

Q

	
j=1

w

�„uk�w+1�+j − f�uk�w+1�+j−1,��… ,

may be integrated with respect to latent variables uk�w+1�+j,
j=1, . . . ,w; k=0, . . . ,Q,

p�u,��x� � 	
k=0

Q

	
j=0

w

w��xk�w+1�+j − h�f j�uk�w+1�,���� . �6�

Apparently, expression �6� is meaningful for w� �1,T /2�; it
is impossible to divide the TS on segments of equal length
for w� �T /2 ,T� �18�.

Note that when the observed series is generated by a sys-
tem functioning in a regular �nonchaotic� mode, the assump-
tions described above that underlie the factorization function
�5� become, generally speaking, incorrect. Therefore, recon-
struction of a dynamic system using the proposed modifica-
tion will be less accurate than in the case of chaotic time
series �see Sec. IV for more detail�.

The transition from �3�–�6� increases the number of latent
variables from one to �T / �w+1��, but a reasonable choice of
segment length w eliminates extensive irregularity of the dis-
tribution p�u ,� �x�, when T→
. Clearly, in the case of cha-
otic TS, the “utmost-reasonable” segment length can be es-
timated by the inverse value of the largest Lyapunov

exponent calculated from the reconstructed phase trajectory.
It is also readily understood that extensive decreasing of w
will reduce accuracy of finding values of latent variables and,
hence, of parameters of the model. It is worth mentioning
that, for Gaussian distribution of measurement noise w�

=N�0,�2�, the cost function �CF� following from �6� corre-
sponds exactly to the CF corresponding to the algorithm of
“multiple shooting” �10�. Note that in the recent work �11� it
was proposed to seek an optimal set of parameters � for each
segment independently. So, the corresponding CF �for w�

=N�0,�2�� is obtained from �6� on the substitution �→�k.
Then, the set ��k� is interpreted as a statistical ensemble for
further estimations. Such an approach is very simple to real-
ize but it is hardly applicable for not very long data series.

A quite apparent drawback of expression �6� is its non-
symmetry with respect to latent variables whose noisy values
form the TS. The value of the probability density �6� depends
on �T / �w+1�� �of T� latent variables only. Before we start
symmetrization we want to make two remarks. First, the set
of the latent variables �ul�w+1��l=0

Q used in �6� is specified un-
ambiguously by the choice of the �noisy� state of the DS, x0,
as the initial one. Second, in the case of steady and rather
long TS, the probability density �6� must not depend on
which of the noisy states xt �t=0, . . . ,w� is initial. These con-
siderations allow us to write down posterior probability den-
sity as a geometric mean of w expressions �6� that differ by
the choice of the initial state. For segments having length
w� �1,T /2�, we obtain, to an accuracy of normalization, the
following expression:

p�u,��x� � 
 	
k=0

T−w−1

	
j=0

w

w��xk+j − h�f j�uk,����1/�w+1�

. �7�

Note that, unlike �6�, the symmetrized expression for the
modified probability density may be written for segments of
length w� �T /2 ,T� too. For this we need to change the ex-
ponent �w+1�−1→ �T−w−1�−1 in �7�.

Expression �7� for posterior probability density is the key
expression in the statistical approach to reconstruction of DS
by noisy TS. Posterior probability density p�� �x� is ex-
pressed through �7� in a natural fashion as

p���x� =� p�u,��x�du . �8�

The posterior probability density �7� allows for dynamic fea-
tures of the reconstructed system to the extent maximum
possible within the framework of the Bayesian approach. A
measure of reconstruction of dynamic features �as well as of
filtering measurement noise� is segment length w: the greater
w, the less �7� differs from the probability density �3� that
formally includes all information about the DS contained in
the initial TS. In the case of the perfect model class scenario,
maximum possible value of w for reconstruction of DS from
a specific TS is determined by the level of noise and, in
addition, by the used approach to investigation and further
application of conditional probability density of model pa-
rameters. Obviously, it is reasonable to extend the length of
the segment unless accuracy of reconstruction ceases to grow
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�i.e., as long as informativity of posterior distribution is in-
creasing�. Examples of the dependence of w on the enumer-
ated factors will be given in Secs. III and IV.

Note that the modified Bayesian approach is adapted to
DS reconstruction at the cost of increased number of latent
variables: they are �T−w��T /2 in expression �7�. Thus,
when performing reconstruction by sufficiently extended TS
containing measurement noise one can encounter the prob-
lem of an extremely large number of arguments for posterior
probability density p�u ,� �x�. Solution of this problem needs
special investigation. In the two sections to follow we will
demonstrate efficiency of the modified Bayesian approach on
examples of solution of problems in which this difficulty
does not arise.

III. RECONSTRUCTION OF PARAMETER VALUES OF A
KNOWN DS BY NOISY TS

The example from Ref. �2� given at the end of Sec. I
clearly shows the inapplicability of the classical Bayesian
approach, if initial conditions are not known precisely. We
will show now that the modified approach allows estimation
of parameter, even if there is no a priori information about
the value of latent variable. We remind the reader that for
solution of this problem Meyer and Christensen proposed a
different modification of the Bayesian approach, namely,
they suggested replacing the dynamic system by the stochas-

tic one. For comparison with results of reconstruction ob-
tained by Meyer and Christensen we took as observational
data time series generated by a logistic map with the value of
parameter a the same as in Ref. �6� �a=1.85� and the initial
condition x0=0.3. The time series is corrupted by white
Gaussian noise with the �noise /�signal ratio different for each
series ranging from 0 to 2. An ensemble of values of param-
eter a, by which a 95% confidence interval was calculated,
was generated by the MCMC method for each time series in
accord with the posterior distribution �7� for different seg-
ment lengths w within the 1-to-7 interval.

The confidence interval of parameter a reconstructed by
TS with the noise level of 0.4 is shown in Fig. 1 for different
segment lengths w=1, . . . ,7. Clearly, in accord with the
qualitative considerations given in Sec. I, an increase in w
results in a decrease of both systematic bias relative to the
correct parameter value and the distribution width determin-
ing error. Consequently, for the segment length w=2, the
correct value of the parameter lies within the 95% confidence
interval and at w=7 the bounds of the confidence interval
differ from the correct value by less than 1%.

Variation of the confidence interval of parameter a with
increasing noise level is shown in Fig. 2 for different seg-
ment lengths. Clearly, the use of the modified posterior prob-
ability density �7� with w�3 gives a better accuracy of re-
construction than the Meyer and Christensen approach �cf.
an analogous dependence of the size of confidence interval
on noise level in Ref. �8��. Thus, the modification of the
Bayesian approach proposed in this paper seems to be more
efficient.

To conclude this section we note that, for moderately
noisy TS, it can be shown that the width �a of the distribu-
tion �8� is related to the largest Lyapunov exponent  and
segment length w by

�a � e−w. �9�

Figure 3 demonstrates that the theoretical dependence �9� �a
vs w �the straight line in Fig. 3; the value of  was calculated
by the logistic map TS using the TISEAN software �12�� is in
good agreement with results of reconstruction �the dots in
Fig. 3�.

FIG. 1. Reconstruction of parameter a of logistic map: confi-
dence intervals of reconstruction as a function of w �the horizontal
line is for the “correct” value of a�. The time series with the noise
level of 0.4 is used for reconstruction.

FIG. 2. Reconstruction of pa-
rameter a of logistic map: 95%
confidence interval of parameter a
as a function of noise level
�noise /�signal for different segment
lengths w �the horizontal line is
for the “correct” value of a�.
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IV. CLASSIFICATION OF TYPES OF BEHAVIOR OF
KNOWN DS BY SHORT NOISY TS

The results obtained in the preceding section enable us to
formulate the problem of classification of types of DS behav-
ior that is important from the practical viewpoint. Consider
by way of example very short �T=20� TS generated by a
more complex DS, namely, Henon map. Evolution operator
of this DS is a second-order sequence function

un+1 = vn,

vn+1 = 1 − avn
2 − bun. �10�

System �10� may demonstrate diverse regular and chaotic
modes of behavior, depending on values of parameters a and
b. Regions of parameters corresponding to different modes
of behavior are shown by graded gray colors in the bifurca-
tion diagram �Fig. 4�.

We took x as a “measurable” quantity, that is latent vari-
able u with additive noise: xn=un+�n. Measurement noise �
was �-correlated and had Gaussian distribution with disper-
sion ��

2. We analyzed the TS generated for different values of
parameters a and b. In the absence of noise, the TS corre-
sponding to different periodic and chaotic modes are readily
distinguishable. By way of example we present in Figs. 5�a�
and 5�b� the TS generated by the map �10� which correspond
to two-period �a=1.05, b=−0.1� and chaotic �a=1.3, b
=−0.2� modes. Addition of even relatively small noise �see
Figs. 5�c� and 5�d�, ��=0.3� makes the dynamic modes in-
distinguishable. We will demonstrate how this problem may
be solved by means of the modified Bayesian approach.

The problem of classification of the mode of behavior of
the DS generating the initial noisy TS is based on investiga-
tion of a statistical ensemble of noiseless TS corresponding
to a statistical ensemble of parameters distributed according
to the posterior probability density �8� �the ensemble is
formed by means of the MCMC algorithm applied to the
posterior distribution �7��. First, the number of elements of
the ensemble of noiseless TS corresponding to one or an-
other dynamic regime is counted, and then probability of
each recorded mode is calculated. Probability of the “cor-
rect” mode of behavior as a function of noise level is plotted
in Fig. 6 for the chaotic and one of periodic noisy TS gen-
erated by the map �10�.

Note that closeness to unity of the probability of the most
probable type of behavior is a convenient quantitative char-
acteristic of the quality of classification. Let us now consider
dependence of this characteristic on segment length w. From
the above mentioned it is clear that, in the case of the chaotic
behavior, this probability will generally approach unity with
increasing w. Probabilities of erroneous types will decrease
almost always due to decreasing width of posterior param-
eter distribution density with increasing w.

Let us now try to understand whether this conclusion is
true for the w dependence of the probability of “correct”
regular mode. As was mentioned in Sec. II, factorization of
the probability density �5� implying a decrease in informa-
tion coupling between the TS counts with increasing time
interval between them becomes incorrect for the system
functioning in a regular �nonchaotic� mode. As a conse-
quence of this incorrectness the dependence of parameter
distribution width on w is somewhat different compared with
the case of the chaotic mode. Namely, for regular regimes
this dependence does not decay exponentially as in the case
of chaotic mode �see �9��. This is explained by the fact that
there is no exponentially fast spreading of initially close
phase trajectories on the attractor corresponding to a regular
mode of a dynamic system; hence, there is no exponential
growth of sensitivity of the current state of the system to
initial conditions with increasing observation time. Neverthe-
less, reduction of the width of p�� �x� with increasing w
ensures an increase of the probability of correct mode with
increasing segment length for regular modes of behavior too.
The above mentioned is confirmed by results of reconstruc-
tion of system �10� presented in Figs. 4 and 6. Figure 4
shows confidence regions of system parameters reconstruc-
tion by the corresponding noisy TS. One can see that for w
�4 the quality of classification improves with increasing

FIG. 3. Reconstruction of parameter a of logistic map: �a versus
w: the dots show results of reconstruction ��noise /�signal=0.2�, and
the line is the theoretical dependence �9�.

FIG. 4. Bifurcation diagram of Henon map. The graded gray
colors show modes corresponding �from bottom to top� to stable
equilibrium state, to two-period, four-period, and chaotic modes,
and to the region of global instability of the model. The gray dots
mark values of parameters at which the TS were generated. The
ellipses are the boundaries of confidence intervals with 95% prob-
ability of parameter reconstruction for different w; ��=0.06.
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segment length for both chaotic and regular modes of behav-
ior. The dependence, decaying exponentially with increasing
w, of the value of the confidence region of the chaotic regime
on segment length is plotted in Fig. 7 together with the same
but nonmonotonic dependence for the regular, two-period re-
gime.

V. CONCLUSION

We considered the statistical Bayesian approach to recon-
struction of dynamic systems by time series generated by
these very systems. We believe that this is the most adequate
approach to reconstruction of “real” dynamic systems which,
first, are subject to irregular external forcing in the course of
signal generation and, second, the signal itself is randomly
perturbed during propagation and recording. The statistical
approach aims not only at reconstructing DS evolution op-
erator but also at constructing probability density of param-
eters of this operator that are regarded to be random quanti-
ties. One of the main difficulties in realizing this approach
arises during reconstruction by chaotic time series. The ex-
ponentially fast diverging of phase trajectories on a chaotic
attractor results in an increase of irregularity of probability
density of parameters as the duration of the TS grows.
Hence, it is impossible to construct parameter probability
density even for relatively short TS. We proposed a modifi-
cation of the classical Bayesian approach that makes it pos-

sible to overcome this difficulty. The efficiency of the modi-
fied approach was demonstrated on an example of seeking
unknown values of parameters of a known DS and classifi-
cation of DS modes of behavior, both regular and chaotic, by
short noisy TS.

The significant “technical” limitation for applying the
modified approach is the absence of a “fast” algorithm of
constructing an arbitrary distribution function �probability
density� that depends on a very large number of arguments.
For noisy TS, this number depends, primarily, on the TS
length �the number of latent variables�. In Sec. II we showed
that, within the framework of the modified Bayesian ap-
proach, information about dynamic features of the system
can be retained to a considerable extent by using almost
maximum possible number of latent variables for the consid-
ered TS. Thus, the proposed solution to the first problem
makes development of an effective algorithm for calculation
of multidimensional distribution functions still more essen-
tial. We hope to complete this task in the near future.

To conclude we would like to emphasize universality of
the proposed approach to reconstruction of DS. It may be
used for any problems of information retrieval from TS gen-
erated by dynamic systems. A challenging problem of this
kind is prognosis of qualitative behavior of unknown DS by
chaotic TS. General formulation of this problem �“prognosis
of bifurcations”� was given in Ref. �5� where this problem
was solved successfully by means of “transforming” the dy-
namic system to a formally stochastic one: the defect of the

FIG. 5. �a� and �b� Chaotic and
periodic TS corresponding to the
values of parameters marked by
dots in Fig. 2; �c� and �d� the same
TS but with noise ��=0.3.

FIG. 6. Probability of recognition of “correct”
dynamic mode as a function of noise level for
different w: �a� chaotic TS; �b� periodic TS.
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model, inevitable by virtue of unknown DS, was described in
Ref. �5� as additive dynamic “noise.” The algorithm of bifur-
cation prognosis used in Ref. �5� is a particular case of the

proposed modified Bayesian approach corresponding to the
maximum short segment w=1. The results discussed in Secs.
III and IV give us grounds to believe that the quality of
bifurcation prognosis may be improved by increasing w up to
a maximum possible value. Note that the example of con-
structing bifurcation prognosis given in Ref. �5�, similarly to
all the other examples available in the literature �13–16�,
refers to the case of “ideal,” free of measurement noise TS
generated by a low-dimensional DS. No advance has been
made in this problem so far because of the absence of effec-
tive algorithm for constructing multidimensional probability
density arbitrarily depending on its arguments.
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